Bulk convergence behavior of convection-resolving simulations of summertime deep convection over land

Davide Panosetti, Linda Schlemmer and Christoph Schär

Institute for Atmospheric and Climate Science, ETH Zurich

Swiss COSMO User Workshop, 20 January 2017
...why do we care about convection?

Direct concern
• forecast convective precipitation
• important feature of the water cycle

Feedbacks to larger scale
• changes vertical stability
• generates and redistributes heat
• removes and redistributes moisture
• makes clouds, strongly affecting surface heating and atmospheric radiation
Convection-resolving simulations

- Clouds and convective transport partly resolved (e.g. Weisman et al. 1997, Hohenegger et al. 2008, Baldauf et al. 2011)

- Better representation of topography and surface fields

- Improved diurnal cycle of precipitation compared to convection-parameterizing models (e.g. Richard et al. 2007, Ban et al. 2014)

- Can be applied to decade-long, continental-scale climate simulations (e.g. Ban et al. 2014, Leutwyler et al. 2016)
Convection-resolving simulations

Two key issues:

(1) The ‘gray zone’ of convection

• Do we still need a (shallow) convection scheme?
• What is the best approach to parameterize turbulence?

(2) Diurnal cycle of convection over complex terrain

• Turbulence parameterizations not designed for mountainous terrain
• Important sensitivities to changes in turbulence parameterization over complex terrain (e.g. Panosetti et al. 2016)
Convergence

- **Numerical convergence**: considers an increasingly resolved numerical representation of a fixed set of equations

- **Physical convergence**: insensitivity of flow statistics with respect to both grid spacing and flow physics

- **External convergence**: includes the influence of better-resolved external parameters (topography, soil variables, ...) at higher resolution

Langhans et al. (2012)
Convergence

“For deep organized convection, (physical) convergence of large-eddy simulations (LES) due to Reynolds-number similarity is not yet obtained at grid spacings $O(100 \text{ m})$”

“Good numerical and physical convergence of bulk (averaged over a large control volume centered over the Alps) properties of an ensemble of moist convective cells in kilometer-scale simulations ”

Langhans et. al (2012)
Bulk convergence

Overarching goal

Understand the bulk convergence behavior of convection-resolving simulations with respect to the feedbacks of summertime deep convection over land

Key questions:

• How does the representation of mass, moisture, temperature and momentum fluxes across various horizontal resolutions influence the distribution of precipitation, cloud cover and the radiative balance?

• Which physical processes and parameterizations yield better convergence properties? Does complex terrain (mountains) improve bulk convergence?

• Which spatial extent limits bulk convergence in simulations of deep convection over land?
Idealized simulations

Basic setup

- Diurnal cycle of convection over land (Schlemmer et al. 2012)
- **COSMO v5.0** @ $\Delta x = 4$, 2, 1 km and 500 m
- Domain 200×200 km2
- Run for 6 days, consider last 5 days for analysis
- Interactive soil model and radiation scheme
- Explicit convection, hybrid 1D TKE-based/2D Smagorinsky turbulence parameterization

Experiments

CTRL: control run, standard case with no background wind (+ensemble)

WIND: CTRL + background wind (Schlemmer et al. 2011)

MOUNTAIN: CTRL + 500-m 3D gaussian hill

PRESCR: CTRL - land-surface scheme (prescribed surface fluxes)

NORAD: PRESCR - radiation scheme (prescribed cooling of 2.5K/day)
Idealized simulations

Basic setup

- Diurnal cycle of convection over land (Schlemmer et al. 2012)
- **COSMO v5.0** @ $\Delta x = 4$, 2, 1 km and 500 m
- Domain 200 x 200 km
- Run for 6 days, consider last 5 days for analysis
- Interactive soil model and radiation scheme
- Explicit convection, hybrid 1D TKE-based/2D Smagorinsky turbulence parameterization

Experiments

CTRL: control run, standard case with no background wind (+ensemble)

WIND: CTRL + background wind (Schlemmer et al. 2011)

MOUNTAIN: CTRL + 500-m 3D gaussian hill

PRESCR: CTRL - land-surface scheme (prescribed surface fluxes)

NORAD: PRESCR - radiation scheme (prescribed cooling of 2.5K/day)
Surface precipitation

\[NRI = \frac{RMSE_{\Delta x}}{\sigma_{500}} = \sqrt{\frac{1}{N} \sum_{\phi=1}^{N} \left[\psi_{\Delta x}(\phi) - \psi_{\Delta x/2}(\phi) \right]^2} \]

\[\frac{1}{N} \sum_{\phi=1}^{N} |\psi_{500}(\phi)| \]

- All simulations show physical convergence
- MOUNTAIN shows higher degree of convergence
- WIND and NORAD: worse behavior after \(\Delta x = 2 \) km
Surface radiation balance

> 100 W m$^{-2}$

Currently under investigation...
• **MOUNTAIN** physically convergent setup (except for SSHF)
• Not a significant improvement in **WIND** and **PRESCHR** compared to **CTRL**
Bulk heat tendencies

\[
\frac{\partial \theta}{\partial t} = -\mathbf{v} \cdot \nabla \theta - \frac{1}{\rho c_p} (\nabla \cdot \mathbf{R}) - \frac{1}{\rho c_p} (\nabla \cdot \mathbf{H}) + L_v
\]

Langhans et al. (2012)
Bulk heat tendencies

- ADV and UNRES scale-dependent by definition
- No physical convergence for RAD
- MOUNTAIN only physically convergent setup for TOT and MIC
Bulk water vapor tendencies

\[\frac{\partial q_v}{\partial t} = -\mathbf{v} \cdot \nabla q_v - \frac{1}{\rho l_v} (\nabla \cdot \mathbf{L}) + S_v \]

\[\mathbf{L} = \rho l_v \nabla'' q_v'' \]

\[\frac{1}{M} \int_V \rho \chi \, dV, \chi = TOT, ADV, UNRES, MIC \]

Langhans et al. (2012)
Bulk water vapor tendencies

- Overall better performance compared to other statistics
- MOUNTAIN shows slightly better convergence behavior
- NORAD worse behavior than CTRL
Preliminary conclusions

• Although domain-averaged precipitation shows convergence for all simulations, the same does not hold for surface radiation balance and domain-averaged heat and moisture tendencies.

• The presence of orography improves the convergence behavior in CRM simulations compared to runs with flat terrain only.

• Reducing the model complexity by switching off the land-surface and radiation schemes does not reduce or even increases the sensitivity to the model grid spacing in higher-resolution simulations.
Real-case simulations

Basic setup

• Domain 1100 x 900 km² (Langhans et al. 2012)
• COSMO v5.0 @ Δx = 4.4, 2.2, 1.1 km and 550 m
• Soil initialized from 10-yr climate run at 12.2-km horizontal grid spacing (Leutwyler et al. 2016)
• Initialized with and driven by 12.2-km run (Leutwyler et al. 2016)
• Explicit convection, hybrid 1D TKE-based/2D Smagorinsky turbulence parameterization

Surface data

GLOBE topography (1 km resolution)
GC2009 land cover (300 m resolution)
HWSD soil type (1 km resolution)
Raymond filter for topography (cutoff ~ 5 Δx)